Você sabia que os cálculos estatísticos também são utilizados nos investimentos? Eles podem ajudar a analisar os ativos e a tomar decisões mais acertadas. Nesse sentido, um dos principais exemplos, é a covariância, que permite a comparação entre duas variáveis.
Entender como esse conceito funciona é importante para minimizar perdas financeiras causadas pelas oscilações dos ativos. Desse modo, o conhecimento permite manter uma carteira de investimentos com maiores chances de trazer os retornos desejados.
Neste artigo, você conhecerá o conceito de covariância, entenderá qual a importância para o investidor e aprenderá como fazer o cálculo. Vamos lá?
O que é covariância?
A covariância é uma ferramenta estatística que permite comparar dois grupos de dados. Dessa forma, é possível analisar como eles se relacionam entre si. No mercado financeiro, seria como entender o que acontece com o preço de um ativo quando a cotação de outro aumenta ou diminui.
Portanto, essa análise também permite fazer uma gestão de risco do portfólio, principalmente por meio da diversificação. Aqui, vale destacar que o principal objetivo de ter uma carteira de investimentos diversificada é minimizar os riscos no momento de investir.
Para entender melhor a relação entre os conceitos, vale conferir um exemplo. Considere, então, a renda fixa e a renda variável. Em geral, quando há uma queda na taxa de juros do mercado, a tendência é que a bolsa de valores suba.
Isso significa que, em um cenário do tipo, ter investimentos na renda variável em sua carteira pode compensar a redução da rentabilidade dos seus títulos de renda fixa.
Qual é a relação entre covariância e correlação?
Ao abordar a covariância, é comum que ela seja confundida com a correlação. Afinal, os conceitos são semelhantes e indicam a forma como duas variáveis se relacionam entre si. A grande diferença é que os valores da correlação tendem a ser padronizados, o que não acontece na covariância.
Com isso, a covariância pode variar de menos infinito até mais infinito. Isso significa que os dados determinarão o valor para uma relação linear ideal. Mas como esses dados não são padronizados, é mais difícil determinar a relação entre as variáveis.
Por outro lado, os coeficientes são padronizados na correlação, de forma que a relação linear perfeita resulta sempre em 1. Desse modo, além da força, a correlação mede também a direção da relação linear entre as variáveis.
DIAS 15 E 16 DE JANEIRO
EVENTO ONLINE E GRATUITO
Qual a diferença entre covariância positiva e negativa?
Além de saber o conceito de covariância, é importante entender que ela pode ser positiva ou negativa. A primeira acontece quando um investimento acompanha a subida do outro — e o mesmo ocorre nas quedas.
Já a covariância negativa ocorre quando um investimento apresenta movimentação oposta ao outro. É justamente essa relação que você deve buscar no momento de montar uma carteira mais equilibrada e sólida.
Como calcular a covariância?
Após conhecer o conceito, vale a pena aprender a fazer o cálculo do indicador. Assim, o primeiro passo para calcular a covariância é conhecer a fórmula, dada por:
Σ (xi – xmed)*(yi–ymed )/(n–1)
Não há postagens relacionadas
Dessa forma, Σ é o somatório de todos os termos, n é a quantidade de itens no conjunto de dados e i representa o índice. Além disso, xi e yi representam o índice, enquanto xmed e ymed são os valores médios de x e y em todas as posições.
Para conhecer os dados, é interessante montar uma tabela com os ativos que serão analisados. Você deverá calcular os valores das médias (xmed e ymed). Para isso, basta somar todos os valores de interesse e dividir pela quantidade de pontos.
Com essas informações, é possível calcular xi-xmed e yi-med de cada ativo. Se x ou y forem menores que a média, eles serão considerados negativos. Quando ficarem maiores do que a média, serão positivos.
Esses sinais são importantes e devem ser indicados no cálculo. Depois, é necessário multiplicar os resultados em cada uma das posições. Da mesma forma, esses valores devem ser guardados, pois serão usados na continuação do cálculo da covariância.
Após fazer o cálculo para todas as posições de x e y, os resultados devem ser somados. Com relação ao denominador da fórmula, é necessário subtrair 1 do número de posições. Se forem 5 posições, por exemplo, o denominador será 4.
Com isso, você terá todos os elementos necessários para calcular a covariância. Por fim, é possível calcular a covariância e definir a relação entre os ativos. Nos casos em que o resultado do cálculo é negativo, então você terá uma covariância negativa.
Qual a importância desse cálculo para seus investimentos?
Depois de entender como calcular a covariância, é interessante saber que essa informação ajuda a fazer o gerenciamento do risco da sua carteira. O motivo é que ter muitos ativos com covariância positiva no portfólio representa um perigo maior.
Ou seja, o ideal é montar uma carteira com ativos que tenham covariância negativa. Dessa forma, as possíveis perdas que você pode ter com a desvalorização de um investimento pode ser compensada pela valorização de outro.
Suponha que a sua carteira tenha uma parte do capital em renda fixa e outra parcela em renda variável. Mesmo dentro de cada classe, ainda é recomendado variar entre ativos e produtos financeiros diferentes.
Uma possibilidade para as ações é variar entre os setores da economia, por exemplo. Com a análise da covariância, você terá indícios do que pode acontecer com os ativos, evitando que eles tenham as mesmas tendências de mercado. Assim, se um papel desvalorizar, o outro poderá apresentar ganhos.
Como usar o indicador ao investir?
Como visto, calcular a covariância é uma forma de fazer uma gestão de risco da carteira de investimentos de forma eficiente. Então a métrica ajuda a fazer a diversificação não apenas entre empresas, mas também entre setores.
Por exemplo, se você conta com diversas ações de empresas do setor de tecnologia, estará exposto a um alto risco. Afinal, se uma crise atingir o segmento, as perdas podem ser mais elevadas.
Diante disso, ao utilizar a fórmula da covariância, o investidor pode evitar investir em muitos ativos que se valorizam ou se desvalorizam simultaneamente.
Agora você sabe o que é covariância e pode utilizar o conceito no momento de montar a sua carteira de investimentos. Dessa maneira, é possível minimizar os riscos de perdas diante da volatilidade do mercado.
Gostou do conteúdo e quer ampliar seu conhecimento? Complemente a leitura e descubra como diminuir o risco de uma carteira de investimentos!